Searching for effective forces in laboratory insect swarms
نویسندگان
چکیده
Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours.
منابع مشابه
Emergent dynamics of laboratory insect swarms
Collective animal behaviour occurs at nearly every biological size scale, from single-celled organisms to the largest animals on earth. It has long been known that models with simple interaction rules can reproduce qualitative features of this complex behaviour. But determining whether these models accurately capture the biology requires data from real animals, which has historically been diffi...
متن کاملBiologically-Inspired Visual Simulation of Insect Swarms
Representing the majority of living animals, insects are the most ubiquitous biological organisms on Earth. Being able to simulate insect swarms could enhance visual realism of various graphical applications. However, the very complex nature of insect behaviors makes its simulation a challenging computational problem. To address this, we present a general biologically-inspired framework for vis...
متن کاملNonlocal Aggregation Models: A Primer of Swarm Equilibria
Biological aggregations such as fish schools, bird flocks, bacterial colonies, and insect swarms have characteristic morphologies governed by the group members’ intrinsic social interactions with each other and by their interactions with the external environment. Starting from a simple discrete model treating individual organisms as point particles, we derive a nonlocal partial differential equ...
متن کاملSimulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors
We present a biologically plausible dynamics model to simulate swarms of flying insects. Our formulation, which is based on biological conclusions and experimental observations, is designed to simulate large insect swarms of varying densities. We use a force-based model that captures different interactions between the insects and the environment and computes collision-free trajectories for each...
متن کاملTime-Frequency Analysis Reveals Pairwise Interactions in Insect Swarms.
The macroscopic emergent behavior of social animal groups is a classic example of dynamical self-organization, and is thought to arise from the local interactions between individuals. Determining these interactions from empirical data sets of real animal groups, however, is challenging. Using multicamera imaging and tracking, we studied the motion of individual flying midges in laboratory matin...
متن کامل